Social Network Mining with Nonparametric Relational Models

نویسندگان

  • Zhao Xu
  • Volker Tresp
  • Achim Rettinger
  • Kristian Kersting
چکیده

Statistical relational learning (SRL) provides effective techniques to analyze social network data with rich collections of objects and complex networks. Infinite hidden relational models (IHRMs) introduce nonparametric mixture models into relational learning and have been successful in many relational applications. In this paper we explore the modeling and analysis of complex social networks with IHRMs for community detection, link prediction and product recommendation. In an IHRM-based social network model, each edge is associated with a random variable and the probabilistic dependencies between these random variables are specified by the model, based on the relational structure. The hidden variables, one for each object, are able to transport information such that non-local probabilistic dependencies can be obtained. The model can be used to predict entity attributes, to predict relationships between entities and it performs an interpretable cluster analysis. We demonstrate the performance of IHRMs with three social network applications. We perform community analysis on the Sampson’s monastery data and perform link analysis on the Bernard & Killworth data. Finally we apply IHRMs to the MovieLens data for prediction of user preference on movies and for an analysis of user clusters and movie clusters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relational Models

We provide a survey on relational models. Relational models describe complete networked domains by taking into account global dependencies in the data. Relational models can lead to more accurate predictions if compared to non-relational machine learning approaches. Relational models typically are based on probabilistic graphical models, e.g., Bayesian networks, Markov networks, or latent varia...

متن کامل

The Nonparametric Metadata Dependent Relational Model

We introduce the nonparametric metadata dependent relational (NMDR) model, a Bayesian nonparametric stochastic block model for network data. The NMDR allows the entities associated with each node to have mixed membership in an unbounded collection of latent communities. Learned regression models allow these memberships to depend on, and be predicted from, arbitrary node metadata. We develop eff...

متن کامل

Max-Margin Nonparametric Latent Feature Models for Link Prediction

Link prediction is a fundamental task in statistical network analysis. Recent advances have been made on learning flexible nonparametric Bayesian latent feature models for link prediction. In this paper, we present a max-margin learning method for such nonparametric latent feature relational models. Our approach attempts to unite the ideas of max-margin learning and Bayesian nonparametrics to d...

متن کامل

Analyzing Correlation between Internationalization Orientation and Social Network

 The research on social networks and collaborative strategies has highlighted from the mid of 1980 which has contributed to the success and development of firms. The relationship and communication with trade partners in overseas help success of firms in entering to foreign markets and improve new partners and new markets abroad. Doing firm internationalization in foreign countries faces some ba...

متن کامل

Revenue - Profit Measurement in Data Envelopment Analysis with Dynamic Network Structures: A Relational Model

The correlated models are introduced in this article regarding revenue efficiency and profit efficiency in dynamic network production systems. The proposed models are not only applicable in measuring efficiency of divisional, periodical and overall efficiencies, but recognizing the exact sources of inefficiency with respect to revenue and profit efficiencies. Two numerical examples, consisting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008